Research Article

Baseline Clinical and Angiographic Profile of Patients Undergoing Left Main Coronary Artery Percutaneous Intervention in an Indian Tertiary Centre

Dr. Mangesh Gajakosh¹, Dr. Shishir Kumar Roul², Dr. Avinash D Arke³, Dr. T Rajesh⁴, Dr. Akshay Kawadkar⁵, Dr. Rinita Ajey⁶, Dr. Avinash D. Arke⁷ ¹Senior Divisional Medical Officer/ Cardiology, Dr Babasaheb Ambedkar Memorial Hospital, Byculla, Mumbai 400005 ²HOD –Addl. Chief Health Director and senior interventional cardiologist ³Senior interventional cardiologist and senior Divisional Medical Officer ⁴Interventional cardiologist and senior Divisional Medical Officer ⁵Sr Resident, Cardiology, Jagjivanram Railway Hospital-Mumbai 400008 ⁶Sr Resident, Cardiology, Jagjivanram Railway Hospital-Mumbai 400008 ⁷Sr Resident, Cardiology, Jagjivanram Railway Hospital-Mumbai 400008

Received: 15.05.25, Revised: 14.06.25, Accepted: 21.07.25

ABSTRACT

Background Left-main coronary artery disease (LM-CAD) accounts for 4-9% of diagnostic angiograms and carries the highest risk among coronary lesions.[1] High-quality baseline data from low- and middle-income settings remain sparse.

Methods We prospectively enrolled 35 consecutive adults (August 2022 - July 2023) undergoing unprotected LM percutaneous coronary intervention (PCI) at Jagjivan Ram Railway Hospital, Mumbai. Detailed demographic, laboratory, echocardiographic and quantitative angiographic variables were captured.

Results Mean age was 66.2 ± 6.3 years; 63% were male. Hypertension (71%), diabetes (63%) and dyslipidaemia (43%) predominated, with 43% reporting current smoking. Distal bifurcation involvement occurred in 68% of cases; 43% had double-vessel and 20% triple-vessel disease in addition to LM stenosis. Median SYNTAX score was 29 (IQR 24-33); IVUS/OCT guidance was used in 100% of procedures. Left-ventricular ejection fraction (LVEF) was preserved (>45\%) in 40\%, moderate (35-45%) in 31%, and severely reduced (<35%) in 20%.

Conclusion Patients undergoing LM-PCI in this single-centre Indian cohort were older, burdened with multiple cardiometabolic risk factors and presented predominantly with complex distal bifurcation disease. These data provide a contemporary regional baseline against which procedural strategies and outcomes can be benchmarked.

Keywords: Left-Main PCI; Clinical Profile; India; SYNTAX Score; Intravascular Imaging.

INTRODUCTION

Cardiovascular mortality lowin and middle-income countries (LMICs) exceeds that high-income regions four-fold, of with South-Asia contributing disproportionately.[2] In India, premature deaths attributable to coronary heart disease (CHD) rose by 59% between 1990 and 2010.[3] Converging epidemics of diabetes, hypertension, central obesity and tobacco exposure accelerate atherogenesis and precipitate coronary events at a younger age compared with Western populations.[4]

Left-main coronary artery disease (LM-CAD) is particularly formidable because the vessel supplies 75%-100% of left-ventricular myocardium depending on coronary dominance.[5] Historical series reported three-year mortality approaching 50% with medical therapy alone.[6] Coronary-artery bypass grafting (CABG) became the reference revascularisation modality, but drug-eluting stent (DES) evolution combined with intravascular ultrasound (IVUS) and optical-coherence tomography (OCT) optimisation have reinvigorated percutaneous approaches.[7] Contemporary randomised trials—SYNTAX,[8] PRECOMBAT,[9] NOBLE[11]—demonstrate EXCEL,[10] and non-inferiority of PCI to CABG for selected (SYNTAX score ≤ 32) when anatomy undertaken experienced operators by supported by physiologic and imaging guidance. Guideline adoption, however, mandates granular knowledge of local case-mix and resource availability. Published Indian data on LM-PCI remain limited, often retrospective or

confined to short-term outcomes.[12] Baseline clinical and angiographic descriptors underpin meaningful interpretation of both procedural choices and long-term results.

We therefore performed a prospective observational study capturing the complete baseline profile—demographics, comorbidities, laboratory indices, left-ventricular function, lesion anatomy and complexity—of all patients undergoing unprotected LM-PCI at a high-volume public tertiary centre in Mumbai. These data establish a reference cohort for subsequent outcome analyses in the same population.

MATERIALS AND METHODS Study Design and Setting

This was a prospective, single-centre, observational cohort study conducted in the Department of Cardiology, Jagjivan Ram Railway Hospital (a 550-bed public tertiary-care institution in Mumbai, India). Patient enrolment spanned 1 August 2022 to 31 July 2023; every participant was followed for 12 months, giving total study duration of 24 months а (August 2022 – July 2024). The protocol complied with the Declaration of Helsinki and was approved by the hospital Institutional Ethics Committee (IEC No. JRRH/IEC/22-21). All patients gave written informed consent.

Study Population

Consecutive adult patients (\geq 18 years) undergoing *de novo* percutaneous coronary intervention (PCI) for unprotected left-main coronary artery (LMCA) stenosis \geq 50 % were screened.

Inclusion Criteria

- symptomatic or objectively documented coronary artery disease attributable to LMCA ± downstream disease;
- Willingness and ability to adhere to scheduled follow-up.

Exclusion criteria

- previous LM stenting or coronary-artery bypass grafting (CABG);
- contraindication to dual-antiplatelet therapy;
- significant valvular heart disease requiring surgery;
- Refusal of consent.

During the enrolment window 39 eligible patients were identified; 4 were lost before the first follow-up, yielding a final analysis cohort of 35 patients.

Sample-size rationale

Using an expected LM-CAD prevalence of 10% among angiographic studies, 85% confidence level and 7% absolute precision,[1] the calculated minimum sample was 30. Anticipating attrition and reflecting the institutional procedural (~2 volume LM-PCIs/month), we targeted \geq 30 and ultimately studied 35 patients.

Baseline assessment

Demographics, cardiovascular risk factors, medication history and physical examination findings were recorded in a dedicated case-record form. Laboratory indices (full blood count, fasting lipid profile, renal function) were measured in the hospital ISO-certified laboratory. Two-dimensional transthoracic echocardiography (GE Vivid E95, 3.5 MHz transducer) provided left-ventricular ejection fraction (LVEF) by biplane Simpson method.

Angiography and PCI procedure

Diagnostic coronary angiography employed radial or femoral approach with 6 F or 7 F catheters. Lesion morphology, reference diameter and lesion length were quantified by two independent interventional cardiologists using quantitative coronary angiography; disagreements were resolved by consensus. Total anatomic complexity was graded with the SYNTAX score.

All interventions were performed with second-generation drug-eluting stents under systematic intravascular imaging guidance— IVUS (OptiCross[™], Boston Scientific) in 80% and OCT (Dragonfly[™], Abbott) in 20%. Lesion preparation included pre-dilatation and, when necessary, atherectomy or cutting balloons. Bifurcation strategy was selected according to Medina classification and imaging findings: *provisional* strategy as default, with DK-crush, culotte, TAP or mini-crush for complex carina or large side-branch disease. Final proximal optimisation technique (POT) and, when two stents were deployed, kissing-balloon inflation were mandatory. Procedural success was defined as residual stenosis < 10% in the main branch and TIMI-3 flow in all treated vessels. without in-lab major complications.

Follow-up schedule

Patients were reviewed at 3, 6 and 12 months (earlier if symptomatic). Each visit included 12-lead clinical evaluation, ECG, and transthoracic echocardiography. Symptomatic patients underwent repeat coronary angiography immediately; otherwise, routine control angiography was planned between 9 and 12 months. Dual-antiplatelet therapy (aspirin 75 mg plus either clopidogrel 75 mg or

ticagrelor 90 mg twice daily) was prescribed for \geq 12 months.

Outcome definitions

For the present manuscript, descriptive baseline data are reported. For completeness, the predefined clinical end-points assessed during follow-up were:

- Major Adverse Cardiac Events (MACE): composite of cardiac death, myocardial infarction (MI), ischemia-driven target-lesion revascularisation (TLR) or target-vessel revascularisation (TVR), and definite/probable stent thrombosis (Academic Research Consortium criteria).
- In-stent restenosis (ISR): ≥50 % luminal narrowing inside the stent or within 5 mm of its edges on quantitative angiography.

Statistical Analysis

Data were entered into a secure electronic database and analysed with SPSS Version 28 (IBM Corp.) Continuous variables are presented as mean ± standard deviation (SD) or median (inter-quartile range) according to distribution (Kolmogorov–Smirnov test). Categorical variables are expressed as counts and percentages. Between-group comparisons

employed Student's *t*-test/ANOVA or Mann– Whitney *U* for continuous data and χ^2 or Fisher's exact test for categorical data. A two-tailed *P*<0.05 defined statistical significance.

RESULTS

Baseline Demographics and Risk Factors

(Table 1) The cohort's mean age was $66.2 \pm 6.3 \text{ y}$ (range 56–84), with 54% aged 61-70 y. Males comprised 63%. Hypertension (71%), diabetes (63%), dyslipidaemia (43%) and current smoking (43%) dominated the risk profile.

Laboratory and Echocardiography

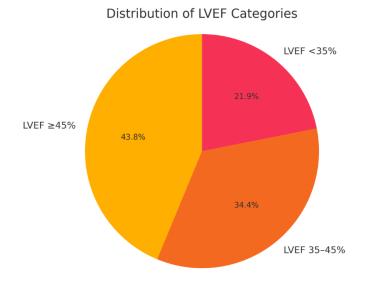
(Table 2) Mean haemoglobin 12.3 g/dL; platelets $2.5 \times 10^{5}/\mu$ L. Mean total cholesterol 152 mg/dL; LDL 86 mg/dL; triglycerides 133 mg/dL. LVEF categories depicted in Figure 1.

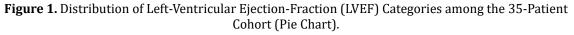
Angiographic Complexity

(Table 3 / Figure 2) Distal bifurcation involvement in 68%; ostial/mid-shaft 32%. Accompanying disease: single-vessel 31%, double-vessel 43%, triple-vessel 20%. Median SYNTAX score 29 (IQR 24–33).

Outcome	Diabetes (n = 22)	No-Diabetes (n = 13)	<i>P</i> -value
Angina	5/22(22.7%)	1/13(7.7%)	0.006
Reinfarction	2/22(9.1%)	0/13(0%)	0.101
Target-lesion revascularisation (TLR)	3/22(13.6%)	1/13(7.7%)	0.410
target-vessel revascularisation (TVR)	2/22(9.1%)	0/13(0%)	0.090
Death	1/22(4.5%)	0/13(0%)	0.031
MACE ⁺	8/22(36.4%)	2/13(15.4%)	0.013

Table 2. Hypertension and 12-Month Outcomes


Outcome	Hypertension (n = 25)	Normotensive (n = 10)	<i>P</i> -value	
Angina	6/25(24%)	0/10(0%)	< 0.001	
Reinfarction	2/25(8%)	0/10(0%)	0.727	
TLR	3/25(12%)	1/10(10%)	0.750	
TVR	2/25(8%)	0/10(0%)	0.003	
Death	2/25(8%)	0/10(0%)	0.071	
MACE	8/25(32%)	2/10(20%)	0.240	


Table 3. Dyslipidaemia and 12-Month Outcomes

Outcome	Dyslipidaemia (n = 15)	Normal Lipids (n = 20)	<i>P</i> -value	
Angina	1/15(6.7%)	2/20(10%)	0.156	
Reinfarction	2/15(13.3%)	1/20(5%)	0.040	
TLR	2/15(13.3%)	2/20(10%)	0.467	
TVR	2/15(13.3%)	0/20(0%)	< 0.001	
Death	0/15(0%)	2/20(10%)	0.070	
MACE	5/15(33.3%)	5/20(25%)	0.197	

Outcome	Smoker (n = 15)	Non-smoker (n = 20)	P-value
Angina	1/15(6.7%)	2/20(10%)	0.180
Reinfarction	2/15(13.3%)	1/20(5%)	0.303
TLR	2/15(13.3%)	2/20(10%)	0.407
TVR	2/15(13.3%)	0/20(0%)	< 0.001
Death	0/15(0%)	2/20(10%)	0.070
MACE	5/15(33.3%)	4/20(20%)	0.070

Table 4. Current Cigarette Smoking and 12-Month Outcomes

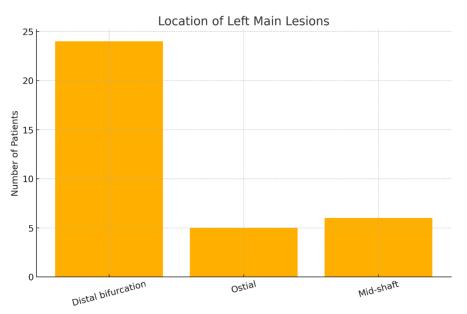


Figure 2. Anatomic Location of Left-Main Coronary Lesions (Bar Chart Showing Distal-Bifurcation, Ostial and Mid-Shaft Counts).

DISCUSSION

Our cohort illustrates the heavy cardiometabolic burden borne by Indian patients reaching the cath-lab for LM-PCI. Mean age was six years younger than Western series such as EXCEL (72y)[10] yet risk-factor prevalence exceeded that of NOBLE (diabetes 23%).[11] Similar observations have been recorded in the registry, CREATE reflecting earlier atherosclerotic onset in South-Asian phenotype.[13]

Distal bifurcation disease (68%) mirrored SYNTAX LM subset data (70%),[8] underscoring technical complexity. Routine intravascular imaging (100%) aligns with expert-consensus recommendations for LM sizing, plague modification and stent optimisation.[14] Intravascular guidance is independently associated with lower target-lesion failure and mortality.[15]

Median SYNTAX score 29 situates our population within the intermediate-complexity bracket where guidelines permit equipoise between PCI and CABG, provided surgical risk is low.[16] Nonetheless, socioeconomic constraints, limited bypass capacity and patient preference tilt real-world practice towards PCI, emphasising the need for indigenous outcome data.

Compared with prior Indian reports—e.g., Seth et al.[17] (2004-2011, n = 107), which lacked systematic imaging—our study offers an updated template reflecting second-generation DES, DK-crush refinement and IVUS/OCT penetration.

Limitations include single-centre design and modest sample size, but consecutive enrolment coupled with comprehensive data capture enhances internal validity.

Baseline insights here will contextualise the subsequent manuscripts analysing early ($\leq 6 \text{ mo}$) and mid-term (12 mo) outcomes and risk predictors in the same cohort.

CONCLUSION

Indian patients selected for percutaneous treatment of unprotected LM-CAD are predominantly elderly males harbouring multiple modifiable risk factors and complex bifurcation lesions. distal Universal intravascular imaging and contemporary bifurcation techniques are feasible in the public-sector setting. These baseline data set the stage for evaluating procedural strategy, short-term safety and longer-term effectiveness LM-PCI of within resource-constrained environments.

REFERENCES

- Park, S.-J., Kim, Y.-H., Park, D.-W., 1. Lee, S.-W., Kim, W.-J., Suh, J., ... Lee, C.-W. (2000). Long-term (three-year) outcome after stenting of unprotected left main coronary artery stenosis. Circulation, 102(19), 2371-2377. https://doi.org/10.1161/01.CIR.102.19.2 371
- Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., ... Murray, C. J. L. (2020). Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982-3021. https://doi.org/10.1016/j.jacc.2020.11. 010
- 3. Gupta, R. (2017). Trends in coronary heart disease epidemiology in India. *Indian Heart Journal*, 69(5), 723-730. https://doi.org/10.1016/j.ihj.2017.05.0 12
- Joshi, P., Islam, S., Pais, P., Reddy, S., Dorairaj, P., Kazmi, K., ... Yusuf, S. (2007). Risk factors for early myocardial infarction in South Asians compared with individuals in other countries. *Journal of the American Medical Association*, 297(3), 286-294. https://doi.org/10.1001/jama.297.3.286
- Park, S.-J. (2022). Contemporary percutaneous coronary intervention of left main coronary artery disease: A state-of-the-art review. *Catheterization* and *Cardiovascular Interventions*, 99(1), 110-125.

https://doi.org/10.1002/ccd.30070

- Conley, M. J., Ely, R. L., Kisslo, J., Lee, K. L., McNeer, J. F., & Rosati, R. A. (1978). The prognostic spectrum of left main stenosis. *Circulation*, 57(5), 947-952.
- https://doi.org/10.1161/01.CIR.57.5.947
 7. Neumann, F. J., Sousa-Uva, M., Ahlsson, A., Alfonso, F., Banning, A., Benedetto, U., ... Zembala, M. (2019). 2018 ESC/EACTS guidelines on myocardial revascularization. European Heart Journal, 40(2), 87-165. https://doi.org/10.1093/eurheartj/ehz4 25
- Morice, M. C., Serruys, P. W., Kappetein, A. P., Feldman, T. E., Ståhle, E., Colombo, A., ... Mohr, F. W. (2010). Five-year outcomes in patients with left main and three-vessel disease after percutaneous coronary intervention

or coronary-artery bypass grafting in the SYNTAX trial. *The New England Journal of Medicine*, 362(13), 1071-1081. https://doi.org/10.1056/NEJMoa0906952

- Park, K. W., Ahn, J.-M., Song, H.-G., Kang, S.-J., Lee, J.-Y., Kim, W.-J., ... Park, S.-J. (2011). Randomized trial of stents versus bypass surgery for left main coronary artery disease (PRECOMBAT). *Journal of the American College of Cardiology*, 57(5), 538-545. https://doi.org/10.1016/j.jacc.2010.09. 034
- Stone, G. W., Sabik, J. F., Serruys, P. W., Simonton, C. A., Généreux, P., Puskas, J., ... Kandzari, D. E. (2016). Everolimus-eluting stents or bypass surgery for left main coronary artery disease. *The New England Journal of Medicine*, 375(23), 2223-2235. https://doi.org/10.1056/NEJMoa1610227
- Mäkikallio, T. T., Holm, N. R., Lindsay, M., Spence, M. S., Erglis, A., Menown, I. B., ... Räber, L. (2020). Percutaneous coronary angioplasty versus coronary artery bypass grafting in unprotected left main stenosis (NOBLE): Five-year outcomes. *The Lancet*, 395(10219), 191-199. https://doi.org/10.1016/S0140-6736(19)32972-1
- 12. Shanmugasundaram, M., Subban, V., Kandregula, K., Rajendran, R., & Jayaraman, B. (2019). Clinical profile and angiographic characteristics of patients undergoing left main coronary interventions in South India. *Indian Heart Journal*, *71*(1), 29-35. https://doi.org/10.1016/j.ihj.2018.10.0 02
- Xavier, D., Pais, P., Devereaux, P. J., Xie, C., Prabhakaran, D., Reddy, S., ... Yusuf, S. (2008). Treatment and outcomes of acute coronary syndromes in India (the CREATE registry). Journal of the American Medical Association, 300(17), 1912-1918. https://doi.org/10.1001/jama.300.17.19 12
- 14. Räber, L., Mintz, G. S., Koskinas, K. C., Johnson, T. W., Holm, N. R., Onuma, Y., ... Windecker, S. (2021). Clinical use of intracoronary imaging for stent implantation, optimization, and assessment: An expert consensus document. JACC: Cardiovascular 14(1), 102-121. Interventions, https://doi.org/10.1016/j.jcin.2020.09.0 46

- Zhang, J., Gao, X., Kan, J., Ge, Z., Han, L., Lu, S., ... Wang, J. (2020). Intravascular ultrasound-guided versus angiography-guided percutaneous coronary intervention: A randomized controlled trial. *Journal of the American College of Cardiology*, *76*(22), 2454-2464. https://doi.org/10.1016/j.jacc.2020.09. 613
- 16. European Society of Cardiology & European Association for Cardio-Thoracic Surgery. (2023). 2023 ESC/EACTS guidelines for the management of coronary artery disease. European Heart Journal, 44, 322-451. https://doi.org/10.1093/eurheartj/ehac 458
- Seth, A., Rastogi, V., Bahl, V., Kapoor, A., & Bhargava, B. (2013). Drug-eluting stent implantation in unprotected left main coronary artery disease: Mid-term outcomes from an Indian registry. *Catheterization and Cardiovascular Interventions*, 82(6), E740-E746. https://doi.org/10.1002/ccd.24935