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ABSTRACT 
Oxidative stress is the major causes of development and progression of many diseases. Nrf2 is a 
transcriptional factor that regulates the stress response by binding with ARE in nucleus and causes 
induction of antioxidant genes and phase 2 detoxifying enzymes. In normal conditions Nrf2 inhibited 
by Keap 1 and during redox imbalance or oxidative stress, Nrf2 gets activated. During such 
condition Nrf2 activity eventually gets increased and causes the expression of antioxidant genes 
like HO-1 (Heme oxygenase-1), NQO-1 (NADPH quinone oxidoreductase 1), glutathione peroxidase. 
Thus, Nrf2-ARE pathway plays important role in diseases like liver disorders, respiratory diseases, 
inflammatory diseases, neurodegenerative diseases etc. 
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INTRODUCTION   

Endogenous and exogenous metabolic processes 

takes place in the body leads to  generation of 
reactive oxygen species.[1]Uncontrolled reactive 

species production leads to oxidative stress, 
which compromises cellular functioning and 

causes ROS/RNS-mediated damage to cellular 

macromolecules such nucleic acids, proteins, and 
lipids, and moreover in cell death. In order to 

maintain cellular redox equilibrium, Nrf2 defends 
against oxidative stress.[2,3]The Keap1-Nrf2-

AREpathway is the most important protective 

mechanism against oxidative and/or electrophilic 
stresses., which is also closely linked to 

inflammatory diseases, cancer, 
neurodegenerative diseases,cardiovascular 

diseases, and ageing.[4]  
 

History 

In 1970, Wattenberg and his co-workers 
demonstrated that phenolic antioxidants used in 

food additives, inhibit tumour development in 
mice following exposure to carcinogens.[5] 

When antioxidants are given before a carcinogen 

exposure, prevention occured. Later, evidence 
suggests that phenolic antioxidants causes 

expression of phase II enzymes, which promotes 
the metabolism and deposition of free radicals. 

Later found that BHA (butylated hydroanisole) 

significantly boosts the transcriptional expression 
of GSTs and detoxifying enzymes in the liver and 

intestine of mouse and rat.[6,7]  

Talalay and colleagues showed through the 

examination of diphenols and diamines found 
these are redox labile substances and act as 

monofunctional inducers, showing that redox 

chemistry is involved in the phase II enzyme 
induction process.[8,9] In 1990, Pickett and 

groups discovered a regulatory element distinct 
in the promoter region of rat Gst-Ya and named 

it as antioxidant responsive element (ARE) that 

is responsive to t-butylhydroquinone (t-BHQ) 
and β-naphthoflavone. The responsive element 

was determined by point-mutation analysis and 
found to be of core sequence RGTGACNNNGC, 

where R and N represents purine any base 
respectively.[10,11]Identical responsive 

components were also discovered in mice and 

humans , known as an electrophile responsive 
element in mice (EpRE).[12]  

Talalay and his companions referred ARE-
regulated and electrophile-inducible 

cytoprotective genes- phase 2 enzymes.[13]They 

examined the structural and functional 
relationship of phase 2 inducers. They used a 

reporter construct in which the mouse Gst-Ya 
ARE is connected to a growth hormone reporter 

gene in order to systemically investigate the 

inducer property.[14]They measured the 
concentration of NQO1(NADPH quinone 

oxidoreductase 1) for evaluating inducer 
potency. 
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Structure 

Nrf2 is a protein , composed of 589 or 605 

amino acids and its expected molecular weight is 
66 kDa, it is detected on SDS-polyacrylamide gel 

electrophoresis. [15] Seven functional Nrf2-
derived proteins with CNC homology (Neh) 

domains make up Nrf2. The CNC-bZIP motif 

found in the Neh1 domain enables Nrf2 to bind 
to the ARE. [16] 

The N- terminal of Nrf2 has Neh2 domain, that 
functions as a regulatory domain. [17]Neh2 has 

two binding sites that control the stability and 
integrity of Nrf2. And it has 7 lysine residues 

essential for conjugation with ubiquitin. 

[18,19]ETGE and DLG motifs are two conserved 
binding sites interact with Nrf2 inhibitor, keap1. 

[20] The Nrf2 transactivation is mediated by 
Neh3, Neh4, and Neh5 domains by interacting 

with coactivators and Neh6 domain maintain its 

stability. [21] 

Keap1 is a major regulator of Nrf2 activity and it 

is an essential Nrf2 regulator and a sensor of 

ARE inducers and it prevents Nrf2 
transactivation. [22]The 624 amino acids found 

in both mouse and human Keap1 proteins. Three 
protein-interacting domains in Keap1 are BTB 

(Broad-complex, Tram track, and Bric a brac) 

domain, DGR (Double Glycine Repeat), and IVR 
(Intervening Region) domain. The N-terminal 

has BTB domain that associates with the Keap1 
and cause dimerization and its binding to Cul3, a 

scaffold protein of Nrf2 ubiquitin E3 ligase. 
[23,24] The DGR domain must be present in the 

C terminal for Keap1 to attach to Neh2 domain 

of Nrf2.  [25] The IVR domain, which is located 
between BTB and DGR, contains cysteine 

residues, the most of which are susceptible to 
oxidation by oxidants and electrophiles. [26,27] 

 

 
Figure 1: Structure a) Nrf2 b) Keap1 [15] 

 

Keap1-Nrf2/Are Signaling Pathway 
In Keap1-Nrf2 signaling pathway, Keap 1 act as 

sensor, Nrf2 as controller and ARE as 
responders. The CNC family contains regulatory 

proteins like Nrf2, which is a transcription factor 
with a highly conserved basic leucine zipper 

structure (bZip).[28] 

Keap1 is the repressor of Nrf2, it has BTB 
domain and DGR domain which binds with CuI3-

Rbx1 and Nrf2 respectively. [29] The BTB region 
of Keap1 functions as a sensor to detect 

electrophilic agent and oxidative 

stress.[30,31]Keap1 represses Nrf2 by keap1 
homodimer attracted to the Nrf2 DLG- ETGE 

motifs, and the Cul3-Rbx1-E3 ligase complex 
ubiquitinates and degrades the lysine-rich - 

helical conformation between EGTE and DLG. 
Keap1 maintains Nrf2 in the cytoplasmby 

causing its ubiquitination and 26 S proteasome 
mediated degradation.[32] In the presence of 

oxidative stress, cysteine residues present in the 
Keap1 changes and which causes Nrf2 to 

stabilise and accumulate in the nucleus. [33]The 

main repressor protein Keap1 undergoes 
modification by oxidation and undergo 

conformational changes, which are the classical 
mechanism of Nrf2 activation. Nrf2 is stabilised 

as a result of Cul3-Rbx1 releasing it from 

ubiquitination. Nrf2 consists of Nrf2-ECH 
homologies on which Neh 1 and Neh2 domains 

of Nrf2 heterodimerize with smallMaf and Jun 
proteins and then bind with ARE for 
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transcription. [34] Glycogen synthase kinase 3 

(GSK-3) mediates phosphorylation, it generates 

motif for the E3 ligase adapter (E3 ubiquitin 
protein ligase), resulting in degradation of Nrf2 

via ubiquitin-dependent proteasome. Acetylation 
of Nrf2 by p300/cAMP response element-binding 

protein-binding protein (CBP) can modulate it 

and the acetylation causes it to adhere to the 
ARE and activate gene transcription, whereas 

deacetylation causes it to be released, which 
causes transcription to end and nuclear 

export.[35,36] 
The Keap1-Nrf2/ARE signaling pathway 

modulation mechanisms can essentially be 

classified into two categories: Keap1-dependent 
and Keap1-independent methods. (i)Hinge 

&latch model (ii) Keap1 ubiquitination (iii) 
Keap1-CUl 3 dissociation modelmodel are three 

models for Keap1-dependent regulation 

mechanisms.The hinge &latch model indicates 
that the DLG, ETGE motifs in the Neh2 region of 

Nrf2 have varying binding affinities to Keap1. 
[37] 

In normal state, homologous Keap1 dimers link 
with ETGE and DLG to form a closed Keap1-Nrf2 

conformation, which causes Nrf2 to be degraded 

by the proteasome.[38]Cysteine residues of 
Keap1 contain essential sulfhydryl groups 

undergo oxidation or production of adducts 
when encounter with substances that alter redox 

balance. Positions 151, 273 and 288 of cysteines 

appear to be particularly susceptible to redox 
alterations and interactions with electrophilic 

substances.[39,40]Meanwhile, the free Keap1 
dimer prepared for attaching to the freshly 

produced Nrf2 for the subsequent cycle. Low-

affinity DLG (latch) is dissociated under oxidative 
stress, whereas high-affinity ETGE (hinge) 

interacts with Keap1 homopolymers to create an 
open Keap1-Nrf2 conformation.[41]In order to 

prevent the newly produced Nrf2 from being 
identified by ubiquitin ligase and degraded by 

the proteasome, the Keap1 binding site is 

occupied. Cumulative Nrf2 triggers the 
expression of the target gene by being 

transduced into the nucleus. Only the closed 
conformation is suitable for the ubiquitination of 

Nrf2 by Keap1. This Keap1-Nrf2 complex can flip 

between the two different states. In Keap1 
ubiquitination model: Keap1 undergoes a 

cysteine alteration that causes Nrf2 ubiquitin 
conjugate to shift to Keap1.In the Keap1 

dissociation hypothesis, inducers like tert-
butylhydroperoxide (t- BHP) can interfere with 

Keap1 and CUL3's connection, reducing Nrf2 

ubiquitination. [42] Keap1 plays two roles in 
Keap1-dependent regulation is to sense 

stimulation from oxidants or electrophiles 

through its several cysteine residues, and the 

other is to prevent Nrf2 from being ubiquitinated 
when the body is under oxidative stress by 

altering Keap1's conformation. [43] 
With other transcription factors that include a 

leucine zipper, such as small Maf proteins, Nrf2 

must form heterodimers in order to exhibit the 
transcriptional activity. The battery of antioxidant 

genes are induced to express, which leads to the 
recovery of redox balance. [44]Numerous 

experimental findings validate this hypothesis 
suggesting that electrophilic treatments which 

target the Keap1/Nrf2 pathway may operate to 

boost Nrf2 transcriptional activity.  
Protein kinases play important role in Nrf2-Keap1 

independent pathway. [45] The stability of Nrf2 
can be enhanced by phosphorylation at a certain 

amino acid residue and thereby its 

transactivation. PKC, PI3K, c-Jun N-terminal 
kinase (JNK), and other kinases can 

phosphorylate Nrf2, which favourably regulates 
the Nrf2 pathway. However, p38 MAPK 

negatively regulates the Nrf2 pathway. [46,47] 
Independent way of Nrf2 regulation include self-

regulation, and post transcriptional regulation. 

Nrf2 binds with promoter site and increase 
regulation. DNA and histone modification, Serine 

phosphorylation and ubiquitination can regulate 
Nrf2. [48] 

Nrf2 phosphorylation, which also leads in the 

association between Nrf2 and ARE in the 
nucleus, facilitates the transcription of numerous 

genes that produce antioxidants, including HO-1 
and NQO1. As a consequence, it is believed that 

activating the Nrf2-ARE pathway will be effective 

against variety of diseases. [49] 
 

Role of the Nrf2 pathway in liver diseases 
The liver is a versatile organ that regulates 

metabolic equilibrium and detoxification. [50] 
Uncontrolled generation of reactive speciesdue 

to liver injuries results in the degradation of cells 

and themacromolecules. It also leads to the 
production of pro-inflammatory genes. [51]It has 

been suggested that anti-inflammatory and 
antioxidant therapy can be effective in the 

management of liver disorders. Researchers 

have found a link between Nrf2 activity 
dysregulation and the emergence of 

inflammatory diseases. Nrf2 is the primary 
regulator of cellular defence by modulating anti-

inflammatory,antioxidant, and cytoprotective 
effects.  [52]A key defence mechanism used by 

cells and organisms to combat oxidative stress is 

the Keap1-Nrf2 pathway. The Nrf2 performs a 
variety of functions in the body's defence against 
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oxidative stress, including regulating cell 

metabolism, detoxification, and cell proliferation, 

all of which are crucial in the pathological 
process of a number of ailments. [53]Both 

parenchymal hepatocytes and non-parenchymal 
cells like Kupffer cells, exhibit Nrf2 activation. 

[54] Moreover, the liver also expresses a large 

number of Nrf2 target genes. Through the 
induction of this target genes, Nrf2 

playsimportant role in hepatic fibrosis, 
inflammation, hepatocarcinogenesis, and 

regeneration. According to research, Nrf2 
activation reduces acute liver damage. [55]In a 

study using a mouse model of acute liver injury 

caused by cadmium, Wu et al. compared the 
levels of serum ALT, LDH, and necrosis in Nrf2-

null and Nrf2-enhanced mice. They discovered 
that Nrf2-enhanced mice seemed to have lower 

ALT and LDH levels as well as less morphological 

changes. Only Nrf2-enhanced mice showed 
increased expression of cytoprotective genes, 

such as glutathione peroxidase, glutamate-
cysteine ligase, glutamate cysteine synthetase. 

Sulfiredoxin 1 activates Nrf2, which affects the 
expression of genes involved in antioxidant 

protection to reduce oxidative stress and 

subsequently liver damage. [56] 
 

Role of Nrf2-ARE pathway in rheumatoid 
arthritis 

Rheumatoid arthritisis an autoimmune, 

inflammatorydisease that attacks cells itself and 
cause pain in joints. Results of various in vitro ,in 
vivo studies shown that Nrf2 has prominent role 
in inflammation. [57]Inflammatory mediators, 

such as cytokines, macrophages, lymphocytes, 

neutrophils, and become activated and are 
delivered to the inflamed area, causing synovium 

fibroblasts to hyper proliferate, swell, and cause 
pain, which leads to the damage of cartilage and 

bone. Radicals produced by oxidation may play a 
significant role in inflammation, which increases 

levels of protein, causes lipid peroxidation and 

leads to DNA damage. [58]The Nrf2 controls the 
redox activity may contribute tothe activation of 

the NLRP3 inflammasome, member of NLR 
family and it regulate the tissue repair process. 

It is then activated by Nrf2 in order to activate 

theNLRP3 inflammasome, which controlsa 
number of activities including antioxidant, tissue 

repair and homeostasis. [59,60]Auto 
inflammatory and autoimmune disorders both 

exhibit increased NLRP3 inflammasome activity, 
and Nrf2-ARE pathway is suggested as an 

important way for the therapeutic regulation of 

NLRP3-related diseases. [61] 

Nrf2 activation supports the resolution of 

inflammation, through the increase of 

prostaglandin (PG) D synthase expression in 
macrophages, which results in the synthesis of 

PGD2, PGJ2 . In order to reduce the 
inflammation, PGJ2 stimulates Nrf2, which 

causes the induction of HO-1 and CD36 in 

macrophages. [62]Interleukins and pro-
inflammatory mediators activate COX-2, which 

leads to inflammation. COX 2 promotes the 
binding of several transcription factors to NF-kb 

in order to maintain its transcriptional activity 
and also enhance its expression. Through direct 

interference with c-JNK, Nrf2 inhibits and 

decreases COX-2 expression. [63,64] 
The dual role of cytokines include pro-

inflammatory effects and anti-inflammatory 
effects. Pro-inflammatory cytokines, such as 

interleukins IL-2, IL-6, and IL-12, TNF-α, are 

generated whenever there is an increased level 
of oxidative stress. They target cartilages and 

synovial membranes, increasing oxidative 
stress.[65] These can also result in the 

development and formation of ROS, which 
stimulates and activates nuclear factor kB, 

reducing the amount of these inflammatory 

cytokines produced and formed. The 
inflammation caused by cytokines can be 

minimized using the Nrf2 activators. Rheumatoid 
arthritis patients show increased Nrf2/HO-1 gene 

expression. Nrf2 regulates both the adaptive and 

innate immune responses in addition to playing a 
significant role in the maintenance of 

inflammation. [66] 
 

Role of Nrf2 in respiratory diseases 

The Keap1-Nrf2 pathway is a major antioxidant 
protection pathway that defends the lung 

against oxidative stress. Oxidative stress have a 
great impact on  number of respiratory related 

diseases, including asthma, lung cancer, chronic 
obstructive pulmonary disease (COPD), acute 

respiratory distress syndrome (ARDS) [67] Since 

airways serve as the site of gas exchange, are 
continually in contact with the environment and 

subject to a variety of airborne pollutants, like 
inhaled oxidants. The airways are situated in 

highly oxidative microenvironments and as a 

result the redox balance in the airways is readily 
affected. [68]Antioxidant substances are seen in 

lung tissues and epithelial lining fluid, protects 
the lungs from oxidative stress. GSH and 

antioxidants are depleted in susceptible 
individuals of respiratory infections. [69] 

Numerous phase 2 detoxifying enzymes, 

including HO-1, are regulated by the 
transcription factor Nrf2, demonstrating that it is 
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a crucial regulator of anti-oxidative responses 

that preserves cellular homeostasis and 

minimizes oxidative damage.[70] 
Asthma is chronic inflammatory disorder 

characterized by airway obstruction. Various 
studies shown that pathogenesis of asthma 

involves oxidative stress. Patients with asthma 

may struggle more than healthy individuals to 
manage oxidant burden, which may be directly 

related to decreased Nrf2 activity. 
[71,72]Additionally, it was shown that 

Nrf2controls the growth of airway smooth 
muscle cells, which act abnormally in asthma, 

and the antioxidant response. [73] Epithelial 

tight connections are disrupted so that airborne 
chemicals can more easily enter into the airway 

wall and interact with immunological and 
inflammatory cells and further impairing the 

barrier function and raising the risk of respiratory 

virus infection. [74]Nrf2 pathways enhances 
epithelial barrier integrity and reduces the 

incidence of asthmatic episodes. Studies shows 
that Nrf2 deficiency increases ovalbumin 

(asthma inducer) induced oxidative stress in 
mice. It also increased levels of neutrophils and 

eosinophils, which in turn causes more oxidative 

damage to lung tissues. [75] 
Nrf2 has two roles in lung cancer according to 

target action, activator protects the cell and 
inhibitor prevent cancer cells from proliferating. 

It also disrupts the initiation of cancer cell 

proliferation and remove ROS, DNA damaging 
substances, carcinogens.[76] Satoh et al. 

discovered that after 8 weeks of treatment, Nrf2-
deficient mice exposed to the carcinogen show a 

relative increase in the number of tumour foci, 

and by 16 weeks of treatment, they exhibit less 
malignancy.[77] 

Increased prevalence and severity of 
emphysema occurred due to disruption of Nrf2 in 

mice. Diet with Nrf2 activator reduces the 
oxidative stress, cell apoptosis and alveolar 

damage due to cigarette smoke exposure. These 

findings imply that Nrf2 participates in a 
pathogenic process that leads in lung 

emphysema led by cigarette smoke exposure, 
and that this pathogenic process can be stopped 

by Nrf2 activator.[78] 

 
Role of Nrf2 in neurodegenerative diseases 

Nrf2 activation combats various pathogenic 
processes involved in neurodegenerative 

diseases by the enhancement of antioxidant 
defences, maintenance of protein homeostasis, 

enhancement of mitochondrial function, and 

suppression of inflammation.[79] The main risk 
factor for neurological disorders is ageing. 

Environmental and genetic factors also influence 

neurodegenerative disorders like Parkinson's 

disease, Alzheimer's disease, Huntington's 
disease etc. These disorders occurred due to 

similar pathogenic mechanisms like increased 
level of ROS, disruption in protein metabolism, 

mitochondrial dysfunction, neuro- 

inflammation.[80]Various studies have shown 
that inducing Nrf2-dependent antioxidant 

activities improves neurological phenotypes in 
disease models. [81] Nrf2 regulates the 

production of a series of antioxidant enzymes 
and proteins that have cytoprotective effects.  

Alzheimer's disease has increased oxidative 

stress, mitochondrial dysfunction, accumulation 
of amyloid -β plaque, APP mutation, aggregation 

of tau protein. Lipton et al. shown that carnosic 
acid, Nrf2 activator inhibited the loss of dendritic 

spines in rat neurons exposed to neurotoxic Aβ. 

[82] In vivo study in mice injected with human 
amyloid precursor protein experienced better 

learning and memory. [83]A histological study of 
the hippocampus revealed that carnosic acid 

lowered phospho-tau staining, astrogliosis, and 
the amount of Aβ plaques while increasing 

dendritic and synaptic markers.  

Parkinson's disease is a progressive 
neurodegenerative disease characterized by 

tremor, rigidity, motor instability and akinesia. 
Dopaminergic neuron loss in the e substantia 

nigra is the primary pathogenic feature for the 

development of disease. [84]Recent studies have 
focused on the link between Nrf2 signaling and 

Parkinson’s disease, and as a result, Nrf2 
activation has emerged as a prospective 

therapeutic target for drugs intended to retard or 

inhibit neuronal cell death in Parkinson's disease. 
[85,86]Nrf2 deficient mice injected with MPTP 

shown decreased dopamine level and on Nrf2 
activator treatment reverses the effect. [87]The 

transplantation of astrocytes overexpressing Nrf2 
in the striatum provided additional in vivo proof 

of Nrf2-mediated neuroprotection. Mice that 

received astrocytes that overexpressed Nrf2 
became more and more resistant to the toxicity 

caused by 6-hydroxydopamine (6-OHDA).Some 
preliminary in vitro data strongly support that 

Nrf2 inducers can slow the progression of PD. 

Also, tert-butylhydroquinone (t-BHQ), a Nrf2 
inducer provided protection from neurotoxicant 

6-OHDA. [88,89] 
Huntington's disease (HD) is a progressive 

neurological disorder with a unique phenotype, 
such as chorea and dystonia, incoordination, 

cognitive loss, and behavioural issues. 

[90]Expansion of CAG repeats in Huntingtin gene 
causes this disorder. Neuronal degeneration in 
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neostriatal and cortex region causes motor 

impairement and loss of memory.[91]In post-

mortem HD brain, mitochondrial complex defects 
were seen in the striatum. Nrf2 activator 

protects both in vitro and in vivo models.[92]The 
oral administration of dimethyl fumarate (DMF), 

a Nrf2-ARE activator, to HD mice models shows 

elevated neuronal Nrf2 and improvement in 
motor function, and the protection of neurons in 

the striatum and motor cortex.[93] 
 
CONCLUSION 

In this review, we addressed the potential 
therapeutic benefits of Nrf2 in various ailments 

and provided a short summary of the history, 
structure and  Nrf2 pathway. The transcriptional 

control of ARE related genes in relation to 

oxidative stress has advanced significantly. In 
order to keep up cellular redox homeostasis and 

inhibit the pathogenesis of numerous 
inflammatory and related diseases, it is crucial 

that these genes are to be expressed. Nrf2 

activators target keap1-Nrf2 interactions and 
degrades keap1, which regulate the signaling 

pathway. It has become the focus of recent 
studies on molecular mechanism of pathways. 

Pharmaceutical companies are in urge to develop 
drugs that target Keap 1 and causes activation 

of Nrf2. 
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